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The concept of the average of a family of related nuclear configurations, for example, the
average of those configurations which are slightly distorted versions of a given stable con-
former of a molecule, has a role as both interpretative tool and also as a reference configu-
ration in practical, computational use. However, depending on the actual coordinates used
along which the average is defined, the average of nuclear configurations is not necessarily a
physically viable arrangement, a fact that has to be taken into account when generating the
corresponding electron density averages. Some of the associated mathematical and compu-
tational problems are described and the validity of a macroscopically motivated approach to
conformation averaging is discussed.
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1. Introduction

The concept of nuclear configuration is quantum-mechanical, implying that models
involving precise nuclear positions are necessarily approximate and are only convenient,
classically motivated tools for the description of nuclear arrangements. Nevertheless, nu-
clei have much greater masses than electrons, hence exhibit stronger particle-like prop-
erties than electrons in a molecule, consequently, it is often useful to model molecules
with a formal geometrical nuclear arrangement in mind [1]. However, these nuclear
arrangements are subject to a quantum mechanical uncertainty, consequently, topolog-
ical techniques are more suitable for their description than classical, geometrical tools.
A differential topological and algebraic topological approach has served as the basis of
a detailed description of nuclear configuration spaces of polyatomic molecules and the
associated potential energy hypersurfaces [2–85]. One important constraint that is not
universally appreciated is the fact that even within a semiclassical, geometrical model,
the nuclear configuration space restricted to the 3N − 6 internal coordinates of a poly-
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atomic molecule (in fact, of the entire stoichiometric family of molecules to which the
actual polyatomic molecule belongs) is not a vector space, and cannot even be converted
into one without loss of information [50]. Hence, geometrical tools are somewhat re-
stricted even without invoking quantum mechanical uncertainty and the realization for
the need of topology.

Of course, it is also well recognized that even within a semiclassical model, the
nuclei of a polyatomic molecule are in continuous motion, and in fact, the zero point vi-
brational motion implies that we are dealing with a distribution of nuclear arrangements
and not with any fixed nuclear configuration. In this context, some form of average
nuclear configuration appears as a useful concept.

In this contribution some of the quantum mechanical and mathematical problems
associated with nuclear configuration averaging are discussed, placing earlier stud-
ies [82,85] on the subject in a broader and more general perspective. In particular,
with the introduction of combinatorial quantum chemistry approaches [86], involving
electron density fragment data libraries or fragment density matrix libraries, containing
many variants corresponding to slightly distorted nuclear configurations and slightly dis-
torted fragment surroundings, the need for nuclear configuration averaging has acquired
additional significance.

2. Averaging according to Cartesian or internal coordinates

Consider first two slightly distorted conformers of a nonlinear molecule A, where
in the two conformers the internal coordinates are nearly the same, allowing a formal su-
perposition of the two structures where the largest deviation in any of the corresponding
Cartesian coordinates is less then 0.1 Å. By carrying out a direct averaging of all pairs
of Cartesian nuclear coordinates, the resulting conformation will be rather reasonable,
showing a deviation of any nuclear coordinate from that in either of the two molecules
less than 0.05 Å.

Rotate now either of the two conformations by 180◦ according to any axis. An
averaging of the corresponding pairs of Cartesian coordinates will lead to a chemically
impossible arrangement for all but some nearly linear molecules, where all nuclei are
crowded into a tube along the rotation axis, having a square base with edge length
of 0.1 Å.

Clearly, the mutual arrangements of the two conformers is of major importance for
averaging, and if the deviations in the molecular shapes are small, then it is reasonable
to carry out averaging of the optimally superimposed arrangements. Such optimum
superpositions can be obtained by least square fitting, or by other, more efficient methods
in special cases.

Let us consider now a pair of L and D amino acids. In any mutual arrangement of
the two molecules, even in the case of an optimum superposition, a direct averaging of
the Cartesian coordinates of the nuclei of these two nuclear configurations would lead to
chemically impossible results.
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Instead of Cartesian coordinates, an averaging procedure can be associated with in-
ternal coordinates. If a chemically reasonable conformational change interconnects the
two conformers for which an average internal configuration is required, then it is reason-
able to consider those internal coordinates along which the dominant components of the
configuration change occurs. For example, if the two configurations are two rotamers
derived from one another by a 60◦ rotation of a methyl group, then a direct Cartesian
coordinate averaging would produce the correct dihedral angles but much too short C–H
distances. However, an averaging along the rotational internal coordinate would lead to
a reasonable structure that belongs to a 30◦ internal rotation of the methyl group (relative
to either of the two conformers), with chemically reasonable C–H distances.

In such instances, averaging along internal coordinates is advantageous.

3. Energy considerations

The involvement of chemically unreasonable nuclear arrangements appears as a
fundamental problem associated with some approaches to nuclear configuration averag-
ing. One possibility to overcome these difficulties is based on energy considerations. In
general, low energy conformations are likely to occur, whereas many high energy con-
formations are unlikely; high energy appears as a practical criterion for excluding highly
unreasonable nuclear arrangements. Energy in most instances determines the degree of
accessibility of a given nuclear arrangement, hence it is reasonable to apply energy con-
ditions to facilitate the choice of rearrangement paths in the nuclear configuration space,
along which the averaging is to be performed.

3.1. Single catchment region

In the simplest case, we shall make the assumption that the two configurations A
and B to be averaged are similar enough that they belong to the same catchment region
of a minimum of the potential energy hypersurface [50]. In such case it is reasonable to
consider the internal coordinates defined by the quadratic form of the Hessian matrix at
the energy minimum, that is, the eigenvectors of the Hessian which are the actual normal
coordinates for the vibrations of the minimum energy conformation. Within this local
coordinate system of the manifold describing the complete nuclear configuration space,
the distance between the two configurations A and B is well defined, furthermore, there
is a unique shortest line interconnecting A and B. An interpolation between A and B
along this line can then be used for averaging. A simple internal coordinate averaging
with reference to the given minimum energy conformation K of the catchment region
can be obtained by

Cav,K = 0.5AK + 0.5BK, (1)

where vectors Cav,K, AK , and BK , are representing the two original and the new av-
erage nuclear configurations expressed in terms of the normal coordinates of energy
minimum K.
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If a weighted average is required, for example, by emphasizing energy, a weighting
different from the value 0.5 can be used. In the case of energy weighting, emphasizing
the greater importance of lower energies,

Cav,K,E = EB

EA + EB AK +
EA

EA + EB BK (2)

can be used, where EA and EB are the respective energies for nuclear configurations A
and B, and the Cav,K,E notation refers to averaging using energy weighting with ref-
erence to the internal coordinates corresponding to the normal coordinates of the local
energy minimum K.

Usually, in both the unweighted and energy weighted cases, such an averaging pro-
cedure results in an averaged nuclear arrangement that belongs to the same catchment
region of energy minimum K. However, if the shortest path between the two configu-
rations, A and B, taken within the nuclear configuration space M using the local metric
defined by the local coordinate system of the given catchment region leads to configu-
rations not falling within the catchment region, than it is possible that average config-
uration so obtained also falls within a different catchment region, with a different local
coordinate system. Whereas the average is a valid concept even in such unusual cases,
nevertheless, such a case may be taken as an indication that the actual average configu-
ration has lesser physical significance with respect to the configurations A and B.

3.2. Two neighbor catchment regions

In a somewhat more complicated case that may often arise, the two nuclear con-
figurations A and B to be averaged belong to two neighbor catchment regions of the
potential energy hypersurface [50].

In such a case, the manifold model of the potential energy hypersurface specifies
two, usually rather different internal coordinate systems, one for each of the two critical
points (usually energy minima) of the two catchment regions. The differentiable mani-
fold model assumes some overlap between the local coordinate systems, but this overlap
is not required to extent over the entire neighbor catchment region. Consequently, if co-
ordinates are required for averaging, then either one of the two local coordinate system
can be taken as dominant, or one may rely on the underlying metric d of the reduced nu-
clear configuration space M, a metric space, but not a vector space, and a space usually
without a global coordinate system.

If extension of one local coordinate system, say that of nuclear configuration A, to
be applied to the nuclear configuration B in the other catchment region is practical (for
example, if the configuration B does not lie too far from the boundary of the catchment
region of configuration A), then the methods applied for the single catchment region
problem, discussed in the previous section, are applicable.

If, however, this is not feasible, then one may rely on the global metric d(A,B)
of the reduced nuclear configuration space M. Since the two catchment regions are
neighbors, there must exist a transition structure nuclear configuration T that lies on the
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common boundary of the two catchment regions. Note that in special cases there might
exist more than one such transition structure nuclear arrangement; in such a case that Ti
transition structure is selected for which the sum of its distances from the structure A
and structure B is minimum, where these distances are measured by the global metric of
the reduced nuclear configuration space M:

d(Ti, A)+ d(Ti, B) = minimum. (3)

Whereas for the selection of appropriate transition structure Ti the global metric d
of the nuclear configuration space M is the natural tool, nevertheless, this metric is
cumbersome for the actual averaging process, since it is independent from any local
internal coordinate choice. Consequently, the actual interpolation will rely on a path
from conformation A, through the transition structure Ti , to the conformation B. This
path p(A,B) has two segments, a segment p(A, Ti) from A to Ti that is linear in the
local metric of the catchment region of conformer A, and a second segment p(Ti, B)
from Ti to the conformation B, that is linear in the local metric of the catchment region
of conformer B. Using the terminology of homotopy theory of algebraic topology, the
complete path p(A,B) is the product of the two segment paths, p(A, Ti) and p(Ti, B),

p(A,B) = p(A, Ti)p(Ti, B), (4)

where the parametrizations of p(A, Ti) and p(Ti, B) are given by the arc length as
measured by the local metrics in each of the two catchment regions, respectively, and
the parametrization for p(A,B) preserves proportionality of the locally measured arc
lengths.

With these constraints, the parameter u of path p(A,B) = p(A,B, u) can be
chosen so that

0 � u � 1, (5)

where u = 0 corresponds to the beginning, and u = 1 corresponds to the endpoint of the
path:

p(A,B, 0) = A (6)

and

p(A,B, 1) = B. (7)

Note that nonlinear relations between overlapping local coordinate systems within
a differentiable manifold may occur, hence the two segments may appear nonlinear when
described in terms of the coordinate system of the other catchment region.

The fully parametrized path from A to B fulfills the natural expectation for energy
that the involvement of the transition structure is likely to ensure that the path does not
visit very high energy, hence unreasonably distorted conformations. In the possession
of this path, in complete analogy with the single catchment region case, the direct, un-
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weighted average of the two nuclear configurations A and B is taken as the point along
the path with parameter value

u = 0.5, (8)

that is,

Cav,A,B = p(A,B, 0.5). (9)

If, on the other hand, an energy-dependent weighting is required, then

Cav,A,B,E = p
(
A,B,

EA

EA + EB
)
, (10)

where the

u = EA

EA + EB (11)

parameter choice provides the required energy weighting, placing greater emphasis on
the structure that is of lower energy.
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